Data
The main entry point for the data is the Measurement class. These
can be loaded from a .pssession file or directly returned as a result
from an expirement.
These classes are wrappers for the underlying .NET code. Each Python
wrapper in this module holds a reference to the underlying .NET SDK
object, usually prefixed ps... like Measurement.psmeasurement.
These .NET classes are instantiated by the measurement or data loading
code. These wrappers are intended to be used for data processing and
exploration and not to be directly instantiated.
The raw data is stored in a DataSet under Measurement.dataset. A
dataset in turn consist of a series of DataArray's. These would
be analogous to the ’Data' tab in the PSTrace software. A data array
would be the equivalent of a column, with a title, array type, and
units.
The Curve objects (retrieved via Measurement.curves) are
interpretations of the data, much like the plots in the PSTrace
software. These can be used for plots or data processing like smoothing
the data and peak finding.
pypalmsens.data
This module contains the public api for classes representing measurement data.
Classes:
-
ArrayType–Data array type for standard arrays.
-
CallbackData–Data returned by the new data callback.
-
CallbackDataEIS–Data returned by the EIS new data callback.
-
CurrentReading–Current reading data class.
-
Curve–Python wrapper for .NET Curve class.
-
DataArray–Python wrapper for .NET DataArray class.
-
DataSet–Python wrapper for .NET DataSet class.
-
DeviceInfo–Dataclass for device information.
-
EISData–Python wrapper for .NET EISdata class.
-
Measurement–Python wrapper for .NET Measurement class.
-
Peak–Python wrapper for .NET Peak class.
-
PotentialReading–Potential reading data class.
-
Status–Device Status class.
ArrayType
flowchart TD
pypalmsens.data.ArrayType[ArrayType]
click pypalmsens.data.ArrayType href "" "pypalmsens.data.ArrayType"
Data array type for standard arrays.
Attributes:
-
Admittance–Admittance.
-
AuxInput–Auxillary input.
-
BipotCurrent–Bipot current.
-
BipotPotential–Bipot potential.
-
CEPotential–CE potential.
-
Charge–Charge.
-
Concentration–Concentration.
-
Cs–Cs.
-
CsIm–Cs imaginary.
-
CsRe–Cs real.
-
Current–Current / μA.
-
CurrentExtraWE–Current setpoint measured back on WE.
-
DCCurrent–DC current.
-
Eac–E AC values.
-
ExtraValue–ExtraValue.
-
ForwardCurrent–Forward current.
-
Frequency–Frequency.
-
Func–Func.
-
Iac–I AC values.
-
Index–Index.
-
Integral–Integral.
-
InverseDerative_dtdE–Inverse derivative dt/dE.
-
MeasuredStepStartIndex–MeasuredStepStartIndex.
-
Phase–Phase.
-
Potential–Potential / V.
-
PotentialExtraRE–Potential setpoint measured back on RE.
-
ReverseCurrent–Reverse current.
-
SE2vsXPotential–SE2 vs XPotential.
-
Signal–Signal.
-
Time–Time / s.
-
Unspecified–Unspecified.
-
Y–Y.
-
YIm–Y imaginary.
-
YRe–Y real.
-
Z–Z.
-
ZIm–Z imaginary.
-
ZRe–Z real.
-
mEdc–Measured applied DC.
-
miDC–Measured I DC values.
Admittance
class-attribute
instance-attribute
Admittance = 18
Admittance.
AuxInput
class-attribute
instance-attribute
AuxInput = 23
Auxillary input.
BipotCurrent
class-attribute
instance-attribute
BipotCurrent = 24
Bipot current.
BipotPotential
class-attribute
instance-attribute
BipotPotential = 25
Bipot potential.
CEPotential
class-attribute
instance-attribute
CEPotential = 27
CE potential.
Charge
class-attribute
instance-attribute
Charge = 3
Charge.
Concentration
class-attribute
instance-attribute
Concentration = 19
Concentration.
Cs
class-attribute
instance-attribute
Cs = 14
Cs.
CsIm
class-attribute
instance-attribute
CsIm = 16
Cs imaginary.
CsRe
class-attribute
instance-attribute
CsRe = 15
Cs real.
Current
class-attribute
instance-attribute
Current = 2
Current / μA.
CurrentExtraWE
class-attribute
instance-attribute
CurrentExtraWE = 31
Current setpoint measured back on WE.
DCCurrent
class-attribute
instance-attribute
DCCurrent = 28
DC current.
Eac
class-attribute
instance-attribute
Eac = 34
E AC values.
ExtraValue
class-attribute
instance-attribute
ExtraValue = 4
ExtraValue.
ForwardCurrent
class-attribute
instance-attribute
ForwardCurrent = 29
Forward current.
Frequency
class-attribute
instance-attribute
Frequency = 5
Frequency.
Func
class-attribute
instance-attribute
Func = 21
Func.
Iac
class-attribute
instance-attribute
Iac = 9
I AC values.
Index
class-attribute
instance-attribute
Index = 17
Index.
Integral
class-attribute
instance-attribute
Integral = 22
Integral.
InverseDerative_dtdE
class-attribute
instance-attribute
InverseDerative_dtdE = 32
Inverse derivative dt/dE.
MeasuredStepStartIndex
class-attribute
instance-attribute
MeasuredStepStartIndex = 35
MeasuredStepStartIndex.
Phase
class-attribute
instance-attribute
Phase = 6
Phase.
Potential
class-attribute
instance-attribute
Potential = 1
Potential / V.
PotentialExtraRE
class-attribute
instance-attribute
PotentialExtraRE = 30
Potential setpoint measured back on RE.
ReverseCurrent
class-attribute
instance-attribute
ReverseCurrent = 26
Reverse current.
SE2vsXPotential
class-attribute
instance-attribute
SE2vsXPotential = 37
SE2 vs XPotential.
Signal
class-attribute
instance-attribute
Signal = 20
Signal.
Time
class-attribute
instance-attribute
Time = 0
Time / s.
Unspecified
class-attribute
instance-attribute
Unspecified = -1
Unspecified.
Y
class-attribute
instance-attribute
Y = 11
Y.
YIm
class-attribute
instance-attribute
YIm = 13
Y imaginary.
YRe
class-attribute
instance-attribute
YRe = 12
Y real.
Z
class-attribute
instance-attribute
Z = 10
Z.
ZIm
class-attribute
instance-attribute
ZIm = 8
Z imaginary.
ZRe
class-attribute
instance-attribute
ZRe = 7
Z real.
mEdc
class-attribute
instance-attribute
mEdc = 33
Measured applied DC.
miDC
class-attribute
instance-attribute
miDC = 36
Measured I DC values.
CallbackData
dataclass
Data returned by the new data callback.
Methods:
-
last_datapoint–Return last measured data point.
-
new_datapoints–Return new data points since last callback.
Attributes:
-
index(int) –Index of last point.
-
start(int) –Start index for the new data.
-
x_array(DataArray) –Data array for the x variable.
-
y_array(DataArray) –Data array for the y variable.
last_datapoint
Return last measured data point.
Source code in src/pypalmsens/_instruments/callback.py
41 42 43 44 45 46 47 | |
new_datapoints
Return new data points since last callback.
Source code in src/pypalmsens/_instruments/callback.py
49 50 51 52 53 54 55 56 | |
CallbackDataEIS
dataclass
Data returned by the EIS new data callback.
Methods:
-
last_datapoint–Return last measured data point.
-
new_datapoints–Return new data points since last callback.
Attributes:
-
data(DataSet) –EIS dataset.
-
index(int) –Index of last point.
-
start(int) –Start index for the new data.
last_datapoint
Return last measured data point.
Source code in src/pypalmsens/_instruments/callback.py
78 79 80 81 82 | |
new_datapoints
Return new data points since last callback.
Source code in src/pypalmsens/_instruments/callback.py
84 85 86 87 88 89 | |
CurrentReading
dataclass
CurrentReading(current_range: AllowedCurrentRanges, current: float, current_in_range: float, timing_status: AllowedTimingStatus, reading_status: AllowedReadingStatus)
Current reading data class.
Attributes:
-
current(float) –current in μA.
-
current_in_range(float) –Raw current value expressed in the active current range.
-
current_range(AllowedCurrentRanges) –Active current range for this data point.
-
reading_status(AllowedReadingStatus) –Status of the current reading.
-
timing_status(AllowedTimingStatus) –Status of the current timing.
current_in_range
instance-attribute
current_in_range: float
Raw current value expressed in the active current range.
current_range
instance-attribute
current_range: AllowedCurrentRanges
Active current range for this data point.
reading_status
instance-attribute
reading_status: AllowedReadingStatus
Status of the current reading.
Curve
Curve(*, pscurve: Curve)
Python wrapper for .NET Curve class.
Parameters:
-
(pscurveCurve) –Reference to .NET curve object.
Methods:
-
clear_peaks–Clear peaks stored on object.
-
copy–Return a copy of this curve.
-
find_peaks–Find peaks in a curve in all directions.
-
find_peaks_semiderivative–Find peaks in a curve using the semi-derivative algorithm.
-
linear_slope–Calculate linear line parameters for this curve between two indexes.
-
plot–Generate simple plot for this curve using matplotlib.
-
savitsky_golay–Smooth the .y_array using a Savitsky-Golay filter with the specified window
-
smooth–Smooth the .y_array using a Savitsky-Golay filter with the specified smooth
Attributes:
-
max_x(float) –Maximum X value found in this curve.
-
max_y(float) –Maximum Y value found in this curve.
-
min_x(float) –Minimum X value found in this curve.
-
min_y(float) –Minimum Y value found in this curve.
-
mux_channel(int) –The corresponding MUX channel number with the curve starting at 0.
-
n_points(int) –Number of points for this curve.
-
ocp_value(float) –OCP value for curve.
-
peaks(list[Peak]) –Return peaks stored on object.
-
reference_electrode_name(None | str) –The name of the reference electrode. Return None if not set.
-
reference_electrode_potential(None | str) –The reference electrode potential offset. Return None if not set.
-
title(str) –Title for the curve.
-
x_array(DataArray) –Y data for the curve.
-
x_label(str) –Label for X dimension.
-
x_unit(str) –Units for X dimension.
-
y_array(DataArray) –Y data for the curve.
-
y_label(str) –Label for Y dimension.
-
y_unit(str) –Units for Y dimension.
-
z_label(None | str) –Units for Z dimension. Returns None if not set.
-
z_unit(None | str) –Units for Z dimension. Returns None if not set.
Source code in src/pypalmsens/_data/curve.py
27 28 | |
mux_channel
property
mux_channel: int
The corresponding MUX channel number with the curve starting at 0. Return -1 when no MUX channel used.
reference_electrode_name
property
reference_electrode_name: None | str
The name of the reference electrode. Return None if not set.
reference_electrode_potential
property
reference_electrode_potential: None | str
The reference electrode potential offset. Return None if not set.
clear_peaks
clear_peaks()
Clear peaks stored on object.
Source code in src/pypalmsens/_data/curve.py
240 241 242 | |
copy
copy() -> Curve
Return a copy of this curve.
Source code in src/pypalmsens/_data/curve.py
34 35 36 | |
find_peaks
find_peaks(min_peak_width: float = 0.1, min_peak_height: float = 0.0, peak_shoulders: bool = False, merge_overlapping_peaks: bool = True) -> list[Peak]
Find peaks in a curve in all directions.
CV can have 1 or 2 direction changes.
Parameters:
-
(min_peak_widthfloat, default:0.1) –Minimum width of the peak in V
-
(min_peak_heightfloat, default:0.0) –Minimum height of the peak in uA
-
(peak_shouldersbool, default:False) –Use alternative peak search algorithm optimized for finding peaks on slopes
-
(merge_overlapping_peaksbool, default:True) –Two or more peaks that overlap will be identified as a single base peak and as shoulder peaks on the base peak.
Returns:
Source code in src/pypalmsens/_data/curve.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | |
find_peaks_semiderivative
find_peaks_semiderivative(min_peak_height: float = 0.0) -> list[Peak]
Find peaks in a curve using the semi-derivative algorithm.
Used for detecting non-overlapping peaks in LSV and CV curves.
The peaks are also assigned to the curve, updating Curve.peaks.
Existing peaks are overwritten.
For more info, see this Wikipedia page.
Parameters:
-
(min_peak_heightfloat, default:0.0) –Minimum height of the peak in uA
Returns:
Source code in src/pypalmsens/_data/curve.py
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | |
linear_slope
Calculate linear line parameters for this curve between two indexes.
current = a + b * x
Parameters:
Returns:
Source code in src/pypalmsens/_data/curve.py
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | |
plot
Generate simple plot for this curve using matplotlib.
Parameters:
-
(axOptional[Axes], default:None) –Add plot to this ax if specified.
-
(legendbool, default:True) –If True, add legend.
-
–plot_kwargsThese keyword arguments are passed to
ax.plot.
Returns:
-
fig(Figure) –Matplotlib figure. Use
fig.show()to render plot.
Source code in src/pypalmsens/_data/curve.py
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 | |
savitsky_golay
savitsky_golay(window_size: int = 3)
Smooth the .y_array using a Savitsky-Golay filter with the specified window size.
(i.e. window size 2 will filter points based on the values of the next/previous 2 points)
Parameters:
-
(window_sizeint, default:3) –Size of the window
Source code in src/pypalmsens/_data/curve.py
52 53 54 55 56 57 58 59 60 61 62 63 | |
smooth
smooth(smooth_level: int = 0)
Smooth the .y_array using a Savitsky-Golay filter with the specified smooth level.
Parameters:
-
(smooth_levelint, default:0) –The smooth level to be used. -1 = none, 0 = no smooth (spike rejection only), 1 = 5 points, 2 = 9 points, 3 = 15 points, 4 = 25 points
Source code in src/pypalmsens/_data/curve.py
38 39 40 41 42 43 44 45 46 47 48 49 50 | |
DataArray
DataArray(*, psarray: DataArray)
flowchart TD
pypalmsens.data.DataArray[DataArray]
click pypalmsens.data.DataArray href "" "pypalmsens.data.DataArray"
Python wrapper for .NET DataArray class.
Parameters:
-
(psarrayDataArray) –Reference to .NET DataArray object.
Methods:
-
as_current_range–Return current range as list of strings.
-
as_reading_status–Return reading status as list of strings.
-
as_timing_status–Return timing status as list of strings.
-
copy–Return a copy of the array.
-
max–Return max value.
-
min–Return min value.
-
savitsky_golay–Smooth the array using a Savitsky-Golay filter with the window size.
-
to_list–Export data array to list.
-
to_numpy–Export data array to numpy.
Attributes:
-
name(str) –Name of the array.
-
ocp_value(float) –OCP Value.
-
quantity(str) –Quantity for array.
-
type(ArrayType) –ArrayType enum.
-
unit(str) –Unit for array.
Source code in src/pypalmsens/_data/data_array.py
32 33 | |
as_current_range
as_current_range() -> list[AllowedCurrentRanges]
Return current range as list of strings.
Source code in src/pypalmsens/_data/data_array.py
125 126 127 128 129 130 131 132 133 | |
as_reading_status
as_reading_status() -> list[AllowedReadingStatus]
Return reading status as list of strings.
Source code in src/pypalmsens/_data/data_array.py
135 136 137 138 139 140 141 142 143 | |
as_timing_status
as_timing_status() -> list[AllowedTimingStatus]
Return timing status as list of strings.
Source code in src/pypalmsens/_data/data_array.py
145 146 147 148 149 150 151 152 153 | |
copy
copy() -> DataArray
Return a copy of the array.
Source code in src/pypalmsens/_data/data_array.py
64 65 66 | |
max
max() -> float
Return max value.
Source code in src/pypalmsens/_data/data_array.py
72 73 74 | |
min
min() -> float
Return min value.
Source code in src/pypalmsens/_data/data_array.py
68 69 70 | |
savitsky_golay
savitsky_golay(window_size: int = 3) -> DataArray
Smooth the array using a Savitsky-Golay filter with the window size.
(i.e. window size 2 will filter points based on the values of the next/previous 2 points)
Parameters:
-
(window_sizeint, default:3) –Size of the window
Source code in src/pypalmsens/_data/data_array.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | |
to_list
Export data array to list.
Source code in src/pypalmsens/_data/data_array.py
101 102 103 | |
to_numpy
to_numpy() -> ndarray
Export data array to numpy.
Source code in src/pypalmsens/_data/data_array.py
97 98 99 | |
DataSet
DataSet(*, psdataset: DataSet)
flowchart TD
pypalmsens.data.DataSet[DataSet]
click pypalmsens.data.DataSet href "" "pypalmsens.data.DataSet"
Python wrapper for .NET DataSet class.
Parameters:
-
(psdatasetDataSet) –Reference to .NET DataSet object.
Methods:
-
arrays–Return list of all arrays. Alias for
.to_list() -
arrays_by_name–Get arrays by name.
-
arrays_by_quantity–Get arrays by quantity.
-
arrays_by_type–Get arrays by data type.
-
aux_input_arrays–Return all AuxInput arrays.
-
current_arrays–Return all Current arrays.
-
current_range–Return current range as list of strings.
-
curve–Construct a custom curve from x and y keys.
-
freq_arrays–Return all Frequency arrays.
-
hidden_arrays–Return 'hidden' arrays used for debugging.
-
potential_arrays–Return all Potential arrays.
-
reading_status–Return reading status as list of strings.
-
time_arrays–Return all Time arrays.
-
timing_status–Return timing status as list of strings.
-
to_dataframe–Return dataset as pandas dataframe.
-
zim_arrays–Return all ZIm arrays.
-
zre_arrays–Return all ZRe arrays.
Attributes:
-
array_names(set[str]) –Return unique set of names for arrays in dataset.
-
array_quantities(set[str]) –Return unique set of quantities for arrays in dataset.
-
array_types(set[ArrayType]) –Return unique set of array type (enum) for arrays in dataset.
-
n_points(int) –Number of points in arrays.
Source code in src/pypalmsens/_data/dataset.py
54 55 56 | |
array_quantities
property
Return unique set of quantities for arrays in dataset.
array_types
property
Return unique set of array type (enum) for arrays in dataset.
arrays
Return list of all arrays. Alias for .to_list()
Source code in src/pypalmsens/_data/dataset.py
119 120 121 | |
arrays_by_name
Get arrays by name.
Parameters:
-
(namestr) –Name of the array.
Returns:
Source code in src/pypalmsens/_data/dataset.py
127 128 129 130 131 132 133 134 135 136 137 138 139 | |
arrays_by_quantity
Get arrays by quantity.
Parameters:
-
(quantitystr) –Quantity of the array.
Returns:
Source code in src/pypalmsens/_data/dataset.py
141 142 143 144 145 146 147 148 149 150 151 152 153 | |
arrays_by_type
arrays_by_type(array_type: ArrayType) -> list[DataArray]
Get arrays by data type.
Parameters:
-
(array_typestr) –Type of the array.
Returns:
Source code in src/pypalmsens/_data/dataset.py
155 156 157 158 159 160 161 162 163 164 165 166 167 | |
aux_input_arrays
Return all AuxInput arrays.
Source code in src/pypalmsens/_data/dataset.py
208 209 210 | |
current_arrays
Return all Current arrays.
Source code in src/pypalmsens/_data/dataset.py
184 185 186 | |
current_range
current_range() -> list[AllowedCurrentRanges]
Return current range as list of strings.
Source code in src/pypalmsens/_data/dataset.py
212 213 214 215 | |
curve
Construct a custom curve from x and y keys.
Parameters:
-
(xstr) –Key identifying the x array
-
(ystr) –Key identifying the y array
-
(titlestr, default:None) –Set the title. If None, use the $x-$y as title
Returns:
-
curve(Curve) –New Curve with plotting x against y
Source code in src/pypalmsens/_data/dataset.py
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | |
freq_arrays
Return all Frequency arrays.
Source code in src/pypalmsens/_data/dataset.py
196 197 198 | |
hidden_arrays
Return 'hidden' arrays used for debugging.
Source code in src/pypalmsens/_data/dataset.py
123 124 125 | |
potential_arrays
Return all Potential arrays.
Source code in src/pypalmsens/_data/dataset.py
188 189 190 | |
reading_status
reading_status() -> list[AllowedReadingStatus]
Return reading status as list of strings.
Source code in src/pypalmsens/_data/dataset.py
217 218 219 220 | |
time_arrays
Return all Time arrays.
Source code in src/pypalmsens/_data/dataset.py
192 193 194 | |
timing_status
timing_status() -> list[AllowedTimingStatus]
Return timing status as list of strings.
Source code in src/pypalmsens/_data/dataset.py
222 223 224 225 | |
to_dataframe
to_dataframe() -> DataFrame
Return dataset as pandas dataframe.
Requires pandas.
Returns:
-
df(DataFrame) –pandas dataframe with all arrays in dataset
Source code in src/pypalmsens/_data/dataset.py
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | |
zim_arrays
Return all ZIm arrays.
Source code in src/pypalmsens/_data/dataset.py
204 205 206 | |
DeviceInfo
dataclass
Dataclass for device information.
Attributes:
EISData
EISData(*, pseis: EISData)
Python wrapper for .NET EISdata class.
Parameters:
-
(pseisEISData) –Reference to .NET EISdata object.
Methods:
-
arrays–Complete list of data arrays.
-
current_range–Current ranges for the measurement.
-
get_data_for_frequency–Returns dictionary with data per frequency.
Attributes:
-
cdc(str) –Gets the CDC circuit for fitting.
-
cdc_values(list[float]) –Return values for circuit description code (CDC).
-
dataset(DataSet) –Dataset which contains multiple arrays of values.
-
frequency_type(str) –Frequency type.
-
has_subscans(bool) –Return True if data contains subscans.
-
mux_channel(int) –Mux channel.
-
n_frequencies(int) –Number of frequencies.
-
n_points(int) –Number of points (including subscans).
-
n_subscans(int) –Number of subscans.
-
ocp_value(float) –OCP Value.
-
scan_type(str) –Scan type.
-
subscans(list[EISData]) –Get list of subscans.
-
title(str) –Tite for EIS data.
-
x_quantity(str) –Quantity for array.
-
x_unit(str) –Unit for array.
Source code in src/pypalmsens/_data/eisdata.py
79 80 | |
arrays
Complete list of data arrays.
Source code in src/pypalmsens/_data/eisdata.py
181 182 183 | |
current_range
current_range() -> list[AllowedCurrentRanges]
Current ranges for the measurement.
Source code in src/pypalmsens/_data/eisdata.py
185 186 187 188 189 | |
get_data_for_frequency
Returns dictionary with data per frequency.
Parameters:
-
(frequencyint) –Index of the frequency to retrieve the data for.
Returns:
Source code in src/pypalmsens/_data/eisdata.py
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | |
Measurement
Measurement(*, psmeasurement: Measurement)
Python wrapper for .NET Measurement class.
Parameters:
-
(psmeasurementMeasurement) –Reference to .NET measurement object.
Attributes:
-
blank_curve(Curve | None) –Blank curve.
-
channel(float) –Get the channel that the measurement was measured on.
-
curves(list[Curve]) –Get all curves in measurement.
-
dataset(DataSet) –Dataset containing multiple arrays of values.
-
device(DeviceInfo) –Return dataclass with measurement device information.
-
eis_data(list[EISData]) –EIS data in measurement.
-
eis_fit(list[FitResult]) –Get all EIS fits from measurement
-
has_blank_subtracted_curves(bool) –Return True if the curve collection contains a blank subtracted curve.
-
has_eis_data(bool) –Return True if EIS data are is available.
-
method(Method) –Method related with this Measurement.
-
n_curves(int) –Number of curves that are part of the Measurement class.
-
n_eis_data(int) –Number of EISdata curves (channels) that are part of the Measurement class.
-
ocp_value(float) –First OCP Value from either curves or EISData.
-
peaks(list[Peak]) –Get peaks from all curves.
-
timestamp(str) –Date and time of the start of this measurement.
-
title(str) –Title for the measurement.
Source code in src/pypalmsens/_data/measurement.py
53 54 | |
blank_curve
property
blank_curve: Curve | None
Blank curve.
if Blank curve is present (not null) a new curve will be added after each measurement containing the result of the measured curve subtracted with the Blank curve.
curves
property
dataset
property
dataset: DataSet
Dataset containing multiple arrays of values.
All values are related by means of their indices. Data arrays in a dataset should always have an equal amount of entries.
eis_fit
property
Get all EIS fits from measurement
Returns:
-
eis_fits(list[EISFitResults]) –Return list of EIS fits
has_blank_subtracted_curves
property
has_blank_subtracted_curves: bool
Return True if the curve collection contains a blank subtracted curve.
method
property
method: Method
Method related with this Measurement.
The information from the Method is used when saving Curves.
n_eis_data
property
n_eis_data: int
Number of EISdata curves (channels) that are part of the Measurement class.
peaks
property
Peak
Peak(*, pspeak: Peak)
Python wrapper for .NET Peak class.
Parameters:
-
(pspeakPeak) –Reference to .NET Peak object.
Attributes:
-
analyte_name(str) –Name of analyte.
-
area(float) –Area of the peak.
-
curve(Curve) –Parent curve associated with Peak.
-
curve_title(str) –Title of parent curve.
-
index(int) –Location of the peak as index number of the curve.
-
label(str) –Formatted label for the peak value.
-
left_index(int) –Left side of the peaks baseline as index number of the curve.
-
left_x(float) –X of the left side of the peak baseline.
-
left_y(float) –Y of the left side of the peak baseline.
-
maximum_of_derivative_neg(float) –Maximum derivative of the negative slope of the peak.
-
maximum_of_derivative_pos(float) –Maximum derivative of the positive slope of the peak.
-
maximum_of_derivative_sum(float) –Sum of the absolute values for both the positive and negative maximum derivative.
-
notes(str) –User notes stored on this peak.
-
right_index(int) –Left side of the peaks baseline as index number of the curve.
-
right_x(float) –X of the right side of the peak baseline.
-
right_y(float) –Returns the Y of the right side of the peak baseline.
-
type(str) –Used to determine if a peak is auto found.
-
value(float) –Value of the peak in units of the curve.
-
width(float) –Full width at half-height of the peak.
-
x(float) –X value of the peak.
-
x_unit(str) –Units of X axis.
-
y(float) –Y value of the peak.
-
y_offset(float) –Offset of Y.
-
y_unit(str) –Units for Y axis.
Source code in src/pypalmsens/_data/peak.py
23 24 25 26 | |
maximum_of_derivative_neg
property
maximum_of_derivative_neg: float
Maximum derivative of the negative slope of the peak.
maximum_of_derivative_pos
property
maximum_of_derivative_pos: float
Maximum derivative of the positive slope of the peak.
maximum_of_derivative_sum
property
maximum_of_derivative_sum: float
Sum of the absolute values for both the positive and negative maximum derivative.
value
property
value: float
Value of the peak in units of the curve. This is the value of the peak height relative to the baseline of the peak.
PotentialReading
dataclass
PotentialReading(potential_range: AllowedPotentialRanges, potential: float, potential_in_range: float, timing_status: AllowedTimingStatus, reading_status: AllowedReadingStatus)
Potential reading data class.
Attributes:
-
potential(float) –Potential in V.
-
potential_in_range(float) –Raw potential value expressed in the active potential range.
-
potential_range(AllowedPotentialRanges) –Active potential range for this data point.
-
reading_status(AllowedReadingStatus) –Status of the potential reading.
-
timing_status(AllowedTimingStatus) –Status of the potential timing.
potential_in_range
instance-attribute
potential_in_range: float
Raw potential value expressed in the active potential range.
potential_range
instance-attribute
potential_range: AllowedPotentialRanges
Active potential range for this data point.
reading_status
instance-attribute
reading_status: AllowedReadingStatus
Status of the potential reading.
Status
dataclass
Status(_status: Status, device_state: AllowedDeviceState = 'Unknown')
Device Status class.
Attributes:
-
aux_input(float) –Raw aux input.
-
aux_input_as_voltage(float) –Aux input as V.
-
corrected_bipot_current(float) –Corrected bipot current in the current range.
-
current(float) –Current value in µA.
-
current_reading(CurrentReading) –Current reading dataclass.
-
current_reading_we2(CurrentReading) –Current reading dataclass for WE2.
-
current_we2(float) –Current WE2 value.
-
device_state(AllowedDeviceState) –Device state.
-
noise(float) –Measured
-
potential(float) –Potential in V
-
potential_reading(PotentialReading) –Potential reading dataclass.
-
pretreatment_phase(Literal['None', 'Conditioning', 'Depositing', 'Equilibrating']) –Pretreatment phase.
corrected_bipot_current
property
corrected_bipot_current: float
Corrected bipot current in the current range.
device_state
class-attribute
instance-attribute
device_state: AllowedDeviceState = 'Unknown'
Device state.
pretreatment_phase
property
pretreatment_phase: Literal['None', 'Conditioning', 'Depositing', 'Equilibrating']
Pretreatment phase.